CascadiaPrime Cognition

 Home    About    Blog    X.AI Understand the Universe    Future of Life Institute    Oxford Future of Humanity Institute    Cambridge Center for Existential Risk   Machine Intelligence Research Institute     Partnership on AI  

  Center for Brains, Minds & Machines     US Brain Project    EU Brain Project    Blue Brain Project     China Brain Project     AI for the Brain     CLAIRE Research Network  

  The Montreal Institute for Learning Algorithms (MILA)     Vector Institute for Artificial Intelligence     The Alberta Machine Intelligence Institute (AMII)     CAIDA: UBC ICICS Centre for Artificial Intelligence Decision-making and Action     CIFAR  Canadian Artificial Intelligence Association (CAIAC)  

 The Stanford Institute for Human-Centered Artificial Intelligence     Open AI    The Association for the Advancement of Artificial Intelligence (AAAI)    Allen Institute for AI     AI 100    The Lifeboat Foundation     Center for Human-Compatible AI  


CascadiaPrime Cognition - AI Theory


AI Theory

  Sanjeev Arora, the Charles C. Fitzmorris Professor of Computer Science at Princeton University, "Why do large language models display new and complex skills?" (December 1, 2023)
  Toward a Practical Theory of Deep Learning: Feature Learning in Deep Neural Networks and Backpropagation-free Algorithms that Learn Features, Mikhail Belkin, Professor of Data Science, Comptuter Science and Engineering at UC San Diego (November29, 2023)
  MITCBMM: Boris Hanin: Introduction to Deep Learning Theory

Institutions focused on AI theory

  The Center for the Theoretical Foundations of Learning, Inference, Information, Intelligence, Mathematics and Microeconomics at Berkeley (CLIMB)